Refine Your Search

Search Results

Technical Paper

Testing of Heavy Truck Advanced Driver Assistance Systems and Crash Mitigation Systems

2023-04-11
2023-01-0010
Modern heavy vehicles may be equipped with an Advanced Driver Assistance System (ADAS) designed to increase highway safety. Depending on the vehicle or manufacturer, these systems may detect objects in a driver’s blind spot, provide an alert when the ADAS determines that the vehicle is leaving its lane of travel without the use of a turn signal, or notify the driver when certain road signs are detected. ADASs also include adaptive cruise control, which adjusts the vehicle’s set cruise speed to maintain a safe following distance when a slower vehicle is detected ahead of the truck. In addition, the ADAS may have a Collision Mitigation System (CMS) component that is designed to help drivers respond to roadway situations and reduce the severity of crashes. CMSs typically use radar or a combination of radar and optical technologies to detect objects such as vehicles or pedestrians in the vehicle’s path.
Technical Paper

Development of a High Power, Low Emissions Heavy Duty Hydrogen Engine

2024-04-09
2024-01-2610
The hydrogen (H2) internal combustion engine (ICE) is emerging as an attractive low life-cycle carbon powertrain configuration for applications that require high power, high duty cycle operation. Owing to the relative ease of conversion of heavy duty (HD) diesel ICEs to H2 and the potential for low exhaust emissions, H2 ICEs are expected to play a strong role in rapidly decarbonizing hard-to-electrify markets such as off-road, rail, and marine. The conversion of HD diesel ICEs to spark ignited H2 with port fuel injection is typically accompanied by a de-rating of engine power and torque. This is due to several fuel- and system-related challenges, including the high risk of abnormal combustion resulting from the low auto-ignition energy threshold of H2, and boost system requirements for highly dilute operation that is used to partially mitigate this abnormal combustion risk.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

A Study of In-Service Truck Weights

2017-03-28
2017-01-1424
Collision reconstruction often involves calculations and computer simulations, which require an estimation of the weights of the involved vehicles. Although weight data is readily available for automobiles and light trucks, there is limited data for heavy vehicles, such as tractor-semitrailers, straight trucks, and the wide variety of trailers and combinations that may be encountered on North American roads. Although manufacturers always provide the gross vehicle weight ratings (GVWR) for these vehicles, tare weights are often more difficult to find, and in-service loading levels are often unknown. The resulting large uncertainty in the weight of a given truck can often affect reconstruction results. In Canada, the Ministry of Transportation of Ontario conducted a Commercial Vehicle Survey in 2012 that consisted of weight sampling over 45,000 heavy vehicles of various configurations.
Technical Paper

Evaluation of the Heavy Vehicle Event Data Recorder for the Freightliner New Cascadia with Detroit Diesel Engines

2019-04-02
2019-01-0636
For model year 2018, Freightliner introduced the New Cascadia model to their lineup of Class 8 trucks. Testing of the Freightliner New Cascadia with Detroit Diesel engines was conducted to evaluate the accuracy of the reported event data contained in the engine Electronic Control Units (ECUs) for these trucks. The testing showed that there are occurrences in DDEC Reports, specifically in the Last Stop Record and Hard Braking event data, when the time between successive event data points was two seconds rather than the reported one second interval. The occurrence of the two-second anomaly was not always present in a Last Stop Record or Hard Braking event. When the two-second anomaly was present in the event data, it occurred randomly and no pattern to when this anomaly occurs was determined. No method was found to be able to detect the presence of this anomaly from the review of a Last Stop Record or Hard Braking event.
Technical Paper

Probability of Frontal Airbag Deployment in Bumper-Bumper and Underride Collisions

2019-04-02
2019-01-0620
Airbag deployment thresholds can be a useful metric of collision severity in accident reconstruction applications. The National Automotive Sampling System (NASS) has provided a publicly-available database of real-world motor vehicle collisions, including more than 10,000 event data recorder (EDR) reports retrieved from airbag control modules. These reports typically indicate the airbag deployment status and the corresponding Delta-V of each recorded event. A prior study analyzing crash data in the NASS database demonstrated the airbag deployment threshold varies between vehicle manufacturers and over time. However, the analysis was limited to Ford and GM vehicles due to insufficient data. This paper expands on the prior study of frontal airbag deployment thresholds by analyzing newer years of NASS EDR data (4,000 additional reports). We found that the Delta-V threshold for a 50% probability of deployment event is higher for Toyota than for GM and Ford vehicles.
Technical Paper

Diesel Fuel-Fired Heater Emissions from a Battery Electric Transit Bus in Real-World Conditions

2024-02-01
2024-01-5011
Battery electric transit buses sold in Canada generally include a fuel-fired diesel auxiliary heater for cabin heating in cold weather. This report details a test project, performed in collaboration with OC Transpo, to capture and quantify the emissions from such a fuel-fired heater (FFH) installed on a New Flyer XE40 battery electric transit bus from OC Transpo’s fleet in Ottawa, Canada. The FFH was tested while the bus was both stationary and being driven on-road in cold conditions. The results include the emissions rates of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons and methane, and soot. Additionally, total particulate matter results were obtained during stationary testing. The results of stationary testing were compared to the California Air Resources Board and European Union standards for FFH emissions, even though these standards do not apply directly to buses operated outside of these jurisdictions.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
X